Using Biocontrols for Insect Pests in High Tunnels

Univ. of VT, Entomology Research Laboratory Elsa Sanchez & Kathleen Ayers Penn State Univ.

& Mark Hutton & Jason Lilley Univ. of Maine Coop Extension

February 2016

Focus on Aphids The #1 Pest in High Tunnels

Topics for Discussion

- The nature of the beast
- Management components
 - Prevention
 - Early detection
 - Natural enemies
 - Plant-mediated systemsInsecticides

What is going on here?

There is NO silver bullet!

Drama in Real Life!

- Overwintered leafy greens infested
- Preparation of the beds
- Planting tomato seedlings

What would you do?

Aphids The Nature of the Beast

- Order = Hemiptera (True Bugs)
- Soft bodied, pear shape, 0.03-0.16 inches long
- Exhaust pipe structures on the rear end (cornicles)
- Over 30 different species on greenhouse crops
- Come in many colors that vary within species

Keep your friends close, and your enemies closer.

Sun-tzu, 400 BC

Aphids Suck

What do they do?

- Piercing-sucking mouthparts
- Insert stylets in plant tissue & remove sap from phloem
 - Distort leaves & stunt plant growth
 - Cause flower drop
 - Transmit viruses
- Excrete sugary substance on leaves (honeydew) that supports sooty mold growth

Life Cycle Basics

Immature insects are called either

NYMPHS or **LARVAE**

<u>METAMORPHOSIS</u> (change by molting/shedding their skin)

Aphids have <u>Simple Metamorphosis</u>

Immatures - NYMPHS Adults and immatures have same basic body form Adults can be winged or wingless Other examples: stink bugs, grass hoppers

<u>Beetles have Complete Metamorphosis</u>

Immatures - LARVAE Adults look very different from immatures and have a non-feeding stage (pupa) Other examples: flies, bees and wasps

Aphid Life Cycle

Why do aphid populations increase so fast?

- Asexual reproduction (Parthenogenesis)
 - All are females and reproduce
 - Give birth to Live young (no eggs/pupae)
 - No mating needed

Too crowded? No problem!

- Grow wings, fly to new host & begin again
 Too cold? No problem!
- Lay eggs, and wait till it warms up

Overwintering phase

Natural Enemy Life Cycle

Why do natural enemy populations increase slower than aphids?

- Sexual reproduction
 - Only 50% are females and can reproduce
 - Have 2 non-feeding stages (egg/pupa)

Too cold or Too dark?

Develop slower, eat less or hibernate

Aphid vs Lady Beetle Life Cycles

Life cycle specifics depend on species, temperature, humidity & food source.

Aphids

- 10-12 days to complete 1 generation
- Adults live approx. 20-40 days
- Each adult produces 40-100 nymphs (3-10 per day)
- Nymphs can mature in 6 days
- Over 20 generations/year

Lady Beetles

- 10 days-4 wk to complete 1 generation
- Adults live 1 3 years
- Adults lay 50-2,000 yellowish eggs in clusters of less than 20
- 1 larva eats 500 1,000 aphids, 1 adult eats up to 2,500 aphids
- Eggs hatch in 3-7 days, larvae develop for 2-4
 wk, pupate on leaf for 5-10 days
- 1-6 generations/year
- Adults aggregate in plant debris to hibernate

	7 days	14 days	21 days	Total @ 21 days
2 aphids	100	5,000	250,000	255,100
Q Q	(2x50)	(100x50)	(5,000x50)	
2 beetles	100	100	5,000	5,100
O Q	(1x100)	Still immature	(50x100)	
Aphid	3,500	10,000	250,000	263,500
Predation	(35x100)	(100x100)	(50x5000)	

Be PROACTIVE!

Aphids vs Lady Beetles

Jan. 8

Jan. 15

Jan. 25

Be PROACTIVE!

The 1st Step: Cultural Control

Prevention

- Sanitation and plant inspection
- Remove infested leaves in hot spots
- Wash infested leaves with strong water spray
- Weed removal in and outside the high tunnel
- Cultivar and crop selection
- Fallow periods
- Remove pet plants from outside
- Low N fertilizer regimes

There is no silver bullet!

Fertility Effects

33% more thrips with high fertilizer regime

Aphids also respond positively to high fertility.

The 1st Step: Cultural Control

- Early detection
 - Plant scouting, yellow sticky cards, indicator/trap plants
- Careful record keeping

Marigolds for Thrips

Eggplant for Whiteflies

Beans for Spider Mites

There is no silver bullet!

Scout Frequently

- Yellow sticky cards (only works for winged forms)
- Inspect crop plants and weeds in and outside the tunnel (for wingless and winged forms) Focus on buds, stems & undersides of leaves
 - Damage
 - Cast skins
 - Shiny leaves
 - Tap plants over white paper
- Use indicator plants in strategic locations
- Take samples and get them identified by an expert

Mass Trapping

- Yellow & blue sticky cards
- Only works for winged forms, particularly suitable for thrips
- Catches beneficials as well as the pest

Aphid Id Matters for IPM!

5 species we commonly found in high tunnels, but there is great diversity

- Some species reproduce faster than others
- Many natural enemies are species-specific
- Aphid id is complicated, get an expert opinion

Melon Aphis gossypii

Green Peach Myzus persicae

Foxglove Aulacorthum solani

Potato Macrosiphum euphorbiae

Carrot-Willow Cavariella aegopodii

Aphid Species Id

Foxglove

Green Peach

- Pale green, yellow & shiny
- Parallel tubercles
- Dark spots at cornicle bases
- Tend to fall off plants when disturbed

Potato

- Pink or green
- Slightly diverging tubercles
- Slender, pear shaped body
- Very long cornicles

Carrot-Willow

- Green or reddish
- Supracaudal process
- Tips of antennae & legsbrownishSiphunculi swollen

- Green, pink, or orange
- Tubercles converging inward (W)
- Long cornicles with black tips

Melon

- Green or yellowish
- Flat tubercles
- Short, dark cornicles

Getting Help With Id

Consult a specialist (extension agent/supplier/consultant) first

Helpful Hints

- Send a sample! (in alcohol) in crushproof, non-leaking container, double bagged in a box, or send live specimens in a plastic bag in a crush-proof container
- Choose the biggest, fattest, most mature aphids
- Send lots of specimens (not 1 or 2 individuals)
- Indicate the host plant (some are specific to the type of plant and pose no risk to your crop)

Biological Control: The Next Line of Defense

The options:

- Parasites
- Predators
- Insect-killing fungi

The strategies:

- Regular releases or applications
- Banker plants
- Promoting native natural enemy establishment

Parasitoids Aphidius spp. (colemani, matricariae, ervi)

What do they do?

- Adults lay eggs <u>inside</u> aphids
- Larva-pupa develop inside, turning aphid into `mummies', killing them
- Adults feed on honeydew
- Work best in cooler temperatures

Appearance

- Species tend to be difficult to tell apart
- Adults
 - Long antennae & legs & small waist
 - 2-3mm in length
 - Black with brown/red highlights
- Larvae-pupae
 - Within golden brown mummies

Adults

Aphid mummy

Parasitoids

Aphelinus abdominalis

What does it do?

- Adults lay eggs <u>inside</u> aphids
- Larvae-pupae develop inside, turning aphid into `mummies', killing them
- Adults feed on aphids & honeydew
- Works better in higher temperatures

Adult

Appearance

- Adults
 - Short antennae & legs
 - o 3mm in length
 - Black & yellow
- Larvae
 - Within <u>blackened</u> mummies

Aphid mummy

Parasitoids Not All Wasps Are Created Equal

Parasitoid	Green Peach	Melon	Foxglove	Potato
Aphidius colemani	X	X		
Aphidius ervi			X	X
Aphidius matricariae	x			
phelinus abdominalis			Х	Х

Predators Aphidoletes aphidimyza Aphidol "EAT" es – Eats Aphids

What does it do?

- Adults are midges (flies)
- Larvae (predatory maggots) eat most types of aphids
 - Inject them with paralyzing toxin & slurps them up
- Adults feed on honeydew & nectars
- Subject to diapause (need supplemental light early/late)

Adult

Appearance

- Adults (mosquito looking)
 - Pink/brown color
 - Long legs & antennae
 - Active at night
- Larvae (maggots) Orange/red color
- Pupae Oval & brown in the soil

Larvae/Maggots

Predators

Syrphid spp. - Hover/Flower Flies

What do they do?

Adults are flies

1 am not c

bee!

- Larvae (predatory maggots) eat most types of aphids
- Adults feed on honeydew & nectars

Appearance

- Adults (look like bees)
 - Black/brown color marked bands/dots, white/yellow
- Larvae (maggots)

Pupa

- Pink, yellow, green & brown marked with 0 white/black color
- Slightly tapered at front 0
- Pupae Oval & brown on plant/soil surfaces

Predators Orius spp.

What do they do?

- Predatory bugs (adults & nymphs)
- Generalist predators (also eats thrips, mites, pollen/nectars)
- Pierces & sucks pest juices
- Some undergo diapause
- Needs food source to establish early in season

Adult

Appearance

- Adults, black, grey, white & brown
- Nymphs red/brown

Nymph

Predators Lady Beetles

What do they do?

- Predatory beetles (adults & larvae eat aphids)
 - Requires lots food to stick around
- Generalist predators (also eats thrips, mites & pollen)
- Does well year-round

Appearance

- Red, orange, yellow with black markings
- Larvae alligator-like
- Pupa attached to leaf surfaces

Predators Lacewings

Eggs

Adult

What do they do?

- Larvae are generalist predators
 - Can be cannibalistic
- Adults consume pollen & nectars (at night)
- Needs lots food to stick around

Appearance

- Adults green-brown
- Larvae alligator-like, brown
- Pupa cocoons on leaf surfaces
- Green lacewing eggs stalked on vegetative surfaces

Insect-Killing Fungi

Fungi that infect and kill insects, NOT plants or humans

Advantages

- Easy to mass produce
- Long shelf life
- Grow in the absence of the pest
- Potential to persist
- Compatible with other bios
- Low impact on the environment & human health

Disadvantages

- Sensitive to environmental conditions
- Killed by UV light

Insect Killing Fungi

- Broad host range (thrips, whiteflies, predatory beetles)
- Several commercial products available
 - o Beauveria bassiana
 - Isaria (= Paecilomyces) fumosoroseus
 - o Metarhizium anisopliae
- Contact is necessary
 - Multiple applications usually needed
 - Dense canopies challenging
 - In general need high humidity (>80%) and warm temps

Mycelium (spore masses) on infected aphids

There is NO silver bullet!

Drama in Real Life!

- Flowering greenhouse tomato crop in February
- Infestation of potato aphids
- Aphids on every inch of the tomatoes
- Multiple releases of natural enemies

What would you do?

Sustaining Natural Enemies

Natural enemies & shipping is expensive! Make Your Own!

<u>Plant-Mediated IPM Systems</u> - Plants (usually non-crop), used as a foundation, in combination with other IPM practices, to manage pests

- Site for nat. enemy releases
- Site to provide food & shelter to establish nat. enemies
- Attracts/maintains purchased & naturally occurring nat. enemies

Aphid Banker Plants Plants that provide nutrition (non-pest host insect or pollen) for an ongoing supply of nat. enemies

3 States x 2 Sites x 3 Tunnels/Site

Habitat Plants Plant combinations that provide food & shelter to attract/sustain natural enemies

Plant-Mediated IPM Systems Advantages

- Happy Bios: A proactive approach
 ✓ Reduce starvation when prey absent
- Cost: Eliminates multiple orders
 ✓ Shipping is a killer
- Better Quality: Fresh is best
 ✓ Improved searching, longevity & reproduction
- Biocontrol Efficacy: Already established
 ✓ Ready to roll & acclimated

Aphid Banker Plant System (ABS)

Winter wheat/rye/barley is purchased infested with bird cherry oat aphids, *Rhopalosiphum padi*

A. colemani are released onto the system

Wasps reproduce within the system

Wasps disperse into crop to search for <u>green</u> <u>peach</u> or <u>melon aphid</u>

Promotes establishment of general predators

Aphid Banker Plant System

Success Tips

Plan Ahead!

Put them out when you put in your transplants

Get on banker rotation schedule

Allow 6 weeks to establish

 Once inoculated with *A. colemani*, it takes approx. 4 wks for wasps to multiply

Minimum rate of at least 1/acre (43,560 sq. ft.)

Cycle 1-2 new ABS in weekly

One ABS can last 10 wks

 Hide unsightly ones to allow remaining wasps to disperse

ABS containment box

Grow ABS in a secluded location, preferably in a different greenhouse & protect them. Parasitoids <u>VERY</u> good at finding hosts

Please view production guidelines handout

Aphid Banker Plant System

Challenges

- Labor intensive with learning curve
- Hyperparasitoids reduce Aphidius efficacy
 - Examine mummy lids after wasp emerges
 - Do not keep systems into late summer
- Ants guard aphids & prevent parasitism
- Not recommended if monocotyledons (lilies or ornamental grasses) are more than 10% of your crop

Aphidius smooth & no lid

Some hyperparasitoids have lids

Dendrocerus carpenteri hyperparasitoid jagged & no lid

Habitat Plants

Summer

Dill (Anethum graveolens var. Bouquet)

Alyssum (*Lobularia maritima* var. Snow Princess) Borage (Borago officinalis)

Bush Bean (*Phaseolus vulgaris* var. Provider)

Marigold (*Tagetes patula* var. Little Hero Yellow)

Hard Red Spring Wheat Aphid Banker

Habitat Plants

Winter

Dwarf Calendula (*Calendula officinalis* var. Yellow Gem)

Viola (*Viola tricolor* var. Helen Mount)

Cold tolerant Max. Height under 18in Alyssum (*Lobularia maritima* var. Snow Princess)

Marigold (*Tagetes patula* var. Little Hero Yellow)

Bush Bean (*Phaseolus vulgaris* var. Provider)

More for spring time

Hard Red Winter Wheat Aphid Banker

Plant-Mediated IPM Systems Current Study Images

Plant-Mediated IPM Systems Preliminary Results: Year 1 Summer

Over 700 individual natural enemies encountered

Borage, Dill & Alyssum attracted primarily parasitic wasps & mummies, Orius adults & nymphs & syrphid adults

Others include various lady beetle life stages, predatory maggots, assassin bugs, lacewing eggs and larvae, etc.

6 species of aphids attracted

What's the Recipe for Success?

✓ Scout regularly

- Make a plan and timeline before the season begins
- ✓ Get to know the pests and beneficials
- ✓ Keep records or take notes
- ✓ Identify susceptible crops or varieties
- Accept that they aren't going away
- ✓ Embrace biodiversity and encourage it
- ✓ Locate a biocontrol supplier you trust
- ✓ Become a happy zoo keeper
- ✓ Figure out what works for you

Bail Out Options

Chemical Considerations

- Choose least toxic insecticides
- Check side effects on natural enemies
 - Ask nat. enemy supplier

Biobest: http://www.biobestgroup.com/en/side-effect-manual

Koppert: http://side-effects.koppert.nl/? ga=1.71195792.123436521.1445879572

Syngenta:

http://www.syngentaflowers.com/country/us/en/Bioline/Documents/Catalog/Bioline-Compatibility Chart.pdf

- Coverage
 - Don't wait until the plants are 10 ft tall
 - Thin foliage to allow for penetration into the plant canopy
 - Test a few plants for phytotoxicity before you spray the whole crop

Remember, Timing Is Everything

Be Proactive, Not Reactive

Don't be shy Contact your support groups (Suppliers/Consultants/Univ. Extension Agents)

Questions?

Time to start planning for Spring! Visit our Website! <u>http://www.uvm.edu/~entlab/</u>

This material is based upon work that is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture (NIFA), Crop Protection & Pest Management Program under Award no. VT-0067CG, Accession No. 1004273; NIFA Extension IPM Program, Award no. 2014-70006-22577, CRIS no. 1004998 and USDA SARE LNE15-343. Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author and do not necessarily reflect the view of the U.S. Department of Agriculture.

© 2016 UVM Entomology Research Laboratory

For educational purposes only. Not for reproduction without permission from authors. Images may be subject to copyright.